This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

Experimental and <i>ab initio</i> calculational studies on nitrato[2,4-dichloro-6-((pyridin-2-ylmethylimino)methyl)phenolato]copper(II)

Yu-Xi Sun ${ }^{\text {a }}$; Ran Zhanga, Li-Feng Zhang ${ }^{\text {a }}$; Xue-Hui Xie ${ }^{\text {b }}$; Lai-Xiang Xu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Qufu Normal University, Qufu, P.R. China ${ }^{\text {b }}$ Department of Biology, Qufu Normal University, Qufu, P.R. China

First published on: 22 September 2010

To cite this Article Sun, Yu-Xi, Zhang, Ran, Zhang, Li-Feng, Xie, Xue-Hui and Xu, Lai-Xiang(2007) 'Experimental and <i>ab initio</i> calculational studies on nitrato[2,4-dichloro-6-((pyridin-2-ylmethylimino)methyl)phenolato]copper(II)', Journal of Coordination Chemistry, 60: 23, 2607 - 2619, First published on: 22 September 2010 (iFirst)
To link to this Article: DOI: 10.1080/00958970701286441
URL: http://dx.doi.org/10.1080/00958970701286441

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Experimental and ab initio calculational studies on nitrato[2,4-dichloro-6-((pyridin-2-ylmethylimino)methyl)phenolato|copper(II)

YU-XI SUN* \dagger, RAN ZHANG \dagger, LI-FENG ZHANG \dagger, XUE-HUI XIE \ddagger and LAI-XIANG XU \ddagger
\dagger Department of Chemistry, Qufu Normal University, Qufu, 273165, P.R. China
\ddagger Department of Biology, Qufu Normal University, Qufu, 273165, P.R. China

(Received 19 September 2006; revised 16 October 2006; in final form 19 October 2006)

Abstract

The mononuclear Schiff-base copper(II) compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{C}_{12} \mathrm{~N}_{2} \mathrm{O}\right)\left(\mathrm{NO}_{3}\right)\right]$, has been synthesized and characterized by elemental analysis and X-ray single crystal determination. The compound crystallizes in the orthorhombic, space group $C m c 2_{1}$ with unit cell dimensions $a=6.713(1), b=22.147(3), c=9.976(1) \AA, M_{\mathrm{r}}=405.67, V=1483.2(3) \AA^{3}, Z=4, R_{1}=0.0568$ and $w R_{2}=0.1331$. X-ray structure determination revealed that the compound possesses crystallographic mirror symmetry. The $\mathrm{Cu}^{\mathrm{II}}$ ion in the compound is five-coordinate in a distorted trigonal bipyramid with one O and two N atoms of the Schiff-base and by two O atoms of the nitrate anion. In the crystal structure, the molecules are linked via intermoleclular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ non-classical hydrogen bonds, forming a two-dimensional network. Density functional theory (DFT) and Hartree-Fock (HF) calculations of the structure, atomic charge distribution and natural bond orbital analyses have been performed. The calculated results show that the $\mathrm{Cu}^{\mathrm{II}}$ ion mainly adopts spd ${ }^{2}$ hybridization and forms five bonds with the NNO donor set of the Schiff-base ligand and with two O atoms of nitrate from four orientations. The coordinate stabilization energies show that the Schiff-base copper(II) compound is very stable.

Keywords: Copper(II) compound; Schiff-base; Crystal structure; Theoretical calculation

1. Introduction

Investigation of structural stability of compounds by both experimental techniques and theoretical methods has been of great interest. With the development of computational techniques, theoretical modeling of drug design, and functional material design and so on, has become possible. Many important properties, such as dipole moment, vibrational frequencies, reaction pathways, molecular orbitals, electrostatic potentials etc., can be predicted by various computational techniques [1].

[^0]Transition metal and natural base compounds are present in the active sites of several important classes of biological and chemical systems. Study on Schiff-base metal compounds is of great interest in various aspects of biology and chemistry [2-5]. It is helpful to study the biological or chemical behavior of such compounds on the electronic level by investigating the structure characteristics and interactive influence between the metal ions and the Schiff-base ligands. Recently, we reported the structures of a few Schiff-base copper(II) compounds [6-9]. As further study on such compounds, especially at the electronic level, we report herein a Schiff-base copper(II) compound, nitrato[2,4-dichloro-6-((pyridin-2-ylmethylimino)methyl)phenolato]copper(II). The crystal structure of the complex was determined by X-ray diffractive, and other properties (such as the natural bond orbitals (NBOs), electronic density analysis and so on) were made based on electronic levels by theoretical methods.

2. Experimental and computational methods

2.1. Synthesis of the compound

All chemicals were obtained from commercial sources and used without further purification. 3,5-dichloro-2-hydroxybenzaldehyde ($19.1 \mathrm{mg}, 0.1 \mathrm{mmol}$) and pyridin-2-ylmethylamine ($10.8 \mathrm{mg}, 0.1 \mathrm{mmol}$) were dissolved in 15 mL methanol. The mixture was stirred for 30 min to give a yellow solution. To this solution was added an aqueous solution (5 mL) of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 24.2 \mathrm{mg})$, with stirring. The mixture was stirred at room temperature for an hour and filtered. After allowing the resulting solution to stand in air for nine days, blue block-shaped crystals formed at the bottom of the vessel on slow evaporation of the solvent. C, H and N were analyzed by an Eager200 element analysis instrument. The copper(II) ions in the complex were leached by heating with a mixture of $6 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ and $6 \mathrm{~N} \mathrm{HCl}(1: 1)$. Copper(II) was analyzed iodimetrically by titrating with a standard $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution to the starch end point. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{CuN}_{3} \mathrm{O}_{4}$: C, $38.49 ; \mathrm{H}, 2.24 ; \mathrm{N}, 10.36 ; \mathrm{Cu}, 15.66 \%$. Found: C, 38.39; H, 2.23; N, 10.33; Cu, 15.90\%.

2.2. X-ray single crystal structure determination

A blue crystal of the compound with approximate dimensions $0.25 \times 0.18 \times 0.10 \mathrm{~mm}^{3}$ was mounted on a glass fibre. The X-ray single crystal diffraction measurement was carried out at 295(2) K on a Bruker SMART APEX area-detector diffractometer up to a 2θ value of 54.78°. The unit cell parameters and data collections were performed using a Bruker SMART program [10] with graphite-monochromated Mo-K α radiation $(\lambda=0.71073 \AA)$ by the $\phi-\omega$ scan technique; cell refinement and collected data reduction were performed by the SAINTPLUS program [10], and empirical absorption correction was performed using SADABS program [11]. The structure was solved by direct methods and refined on F^{2} by full-matrix least-squares methods with the SHELXTL-97 program [12]. All non-hydrogen atoms were refined anisotropically. H atoms were placed in calculated positions and constrained to ride on their parent atoms. The crystallographic data and experimental details for the structural analysis are summarized in table 1. The fractional atomic coordinates and equivalent isotropic

Table 1. Crystal data and structure refinement parameters for the compound.

Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{CuN}_{3} \mathrm{O}_{2} \mathrm{~A}$		
Formula weight	405.67		
Temperature (K)	$298(2)$		
Radiation(Mo-K $\alpha) \lambda(\AA)$	0.71073		
Crystal shape/color	Block/blue		
Crystal size $\left(\mathrm{mm}^{3}\right)$	$0.25 \times 0.18 \times 0.1$		
Crystal system	Orthorhombic		
Space group	$C m c_{1}$		
$a(\AA)$	$6.713(1)$		
$b(\AA)$	$22.147(3)$		
$c(\AA)$	$9.976(1)$		
$V\left(\AA^{3}\right)$	$1483.2(3)$		
Z	4		
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.817		
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.86		
$\mathrm{~F}(000)$	812		
θ Range $\left({ }^{\circ}\right)$	$2.75 / 27.77$		
Index range (h, k, l)	$-8 / 8,-27 / 27,-12 / 12$		
Measured reflections	6049		
Observed reflections $I \geq 2(I)$	1490		
Min. and max. transmission	$0.674 / 0.836$		
Data/restraints $/$ parameters	$1738 / 6 / 137$		
Goodness-of-fit on F^{2}	1.141		
$R_{1}, w R_{2}[I \geq 2 \sigma(I)]$	$0.0568,0.1325$		
$R_{1}, w R_{2}($ all data $)$	$0.0661,0.1364$		
Large diff. Peak and hole $\left(\mathrm{e} \AA^{-3}\right)$	0.55 and -0.73		
$(\Delta / \sigma)_{\text {max }}$	<0.0001		
$\left.R_{1}=\Sigma\left\\|F_{\mathrm{o}}\|-\| F_{\mathrm{c}}\right\\| / / F_{\mathrm{o}}, \quad w R_{2}=\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / w\left(F_{\mathrm{o}}^{2}\right)\right]^{2}\right]^{1 / 2}$,	$w=\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0267 P)^{2}+\right.$		
$7.3669 P]^{-1}$, where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$.			

displacement parameters as well as other supplementary experimental data have been deposited at the Cambridge Crystallographic Data Centre (CCDC 619053).

2.3. Computational methods

Two DFT structure optimizations of the compound were performed with the X-ray geometry. The calculations employed the unrestricted Becke's three parameter hybrid functional combined with the Lee-Yang-Parr correction functional (UB3LYP) [13, 14] and the unrestricted Becke's three parameter hybrid functional with Perdew/Wang 91 (UB3PW91) [15-19] density functional theory method. Vibrational frequeny calculations ascertain the structure was stable (no imaginary frequencies). The atomic charges, frontier molecular orbitals (FMOs), natural bond orbitals (NBOs) analyses were performed on the experimental structure by the UB3PW91 method.

To investigate the effects of the intramolecular interactions on the conformation of the molecule, we have performed an optimization of the geometry of the isolated molecule by unrestricted ab initio quantum mechanical molecular orbital Hartree-Fock (UHF) calculations [20].

All the calculations were performed at LANL2DZ level with Gaussian 03 software package (version C.02) [21] on a Pentium IV computer, using the default convergence criteria.

3. Results and discussion

3.1. Structure description of the compound

The displacement ellipsoid plots with the numbering scheme for the compound are shown in figure 1, and the crystal packing is illustrated in figure 2 . Selected bond lengths and angles are listed in table 2. The bond lengths and angles related to the non-classical hydrogen bonding of the compound are listed in table 3.

Figure 1. Molecular structure of the compound. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: A $-x, 1+y, z$.

Figure 2. The crystal packing viewed along the a-axis. Non-classical hydrogen bonds are shown as dashed lines.
Table 2. Selected geometry structure parameters for the compound

Table 2. Continued

Experimental Bond lengths (\AA)	Calculated			Experimental Bond angles (${ }^{\circ}$)		Calculated		
	B3PW91	B3LYP	HF			B3PW91	B3LYP	HF
				C2-C3-C4	118.1(9)	119.4	119.3	118.1
				C4-C5-C6	121.9(13)	119.9	119.9	120.8
				C10-C11-C12	$118.8(11)$	119.3	119.3	119.3
				C5-C4-C3	120.6(9)	121.2	121.3	122.2
				C3-C4-Cl2	118.8(7)	118.6	118.6	118.8
				C5-C4-C12	120.5(8)	120.2	120.1	119.0
				Ol-Cul-N2	178.1(4)	175.1	174.8	151.3
				$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 2$	152.2(2)	149.5	149.4	150.7
Mean deviation	0.035	0.041	0.074			-0.11	-0.11	-0.74
Mean absolute deviation	0.043	0.047	0.080			1.60	1.62	6.28
Standard deviation	0.051	0.055	0.148			2.05	2.09	6.61

Table 3. Distances (\AA) and angles $\left({ }^{\circ}\right)$ involving non-classical hydrogen bonding of the compound.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}(\mathrm{D}-\mathrm{H})(\AA)$	$\mathrm{D}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{D}(\mathrm{D} \cdots \mathrm{A})(\AA)$	Angle $(\mathrm{D}-\mathrm{H} \cdots \mathrm{A})\left({ }^{\circ}\right)$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.51	$3.16(1)$	127.0
$\mathrm{C} 10-\mathrm{H} 10 \cdots 3^{\mathrm{ii}}$	0.93	2.51	$3.16(1)$	127.0
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.44	$3.37(1)$	175.0
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{\mathrm{iv}}$	0.93	2.44	$3.37(1)$	175.0

Symmetry code: (i) $x, y,-1+z$; (ii) $1-x, y,-1+z$; (iii) $1-x, 1-y,-1 / 2+z$; (iv) $x, 1-y,-1 / 2+z$.

In the mononuclear Schiff-base copper(II) compound, the $\mathrm{Cu}^{\text {II }}$ ion is five-coordinate in a distorted trigonal bipyramid configuration by one O and two N atoms of the Schiffbase ligand, and by two O atoms of the nitrate. The molecule possesses mirror symmetry, with $\mathrm{C} 1-\mathrm{C} 13, \mathrm{Cl} 1, \mathrm{Cl} 2, \mathrm{O} 1, \mathrm{O} 3, \mathrm{~N} 1-\mathrm{N} 3, \mathrm{H} 3, \mathrm{H} 5, \mathrm{H} 7$, and H10-H13 lying on the crystallographic mirror plane. Atom O2 lies $1.0435 \AA$ above the plane defined by the atoms at the mirror plane. The values of the bond angles $\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$ and $\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2 \mathrm{~A}$ are $152.2(2)$ and $55.5(4)^{\circ}$, respectively, indicating a distorted trigonal bipyramid geometry (symmetry code: $\mathrm{A}-x, 1+y, z$). The bond lengths around the Cu are comparable to the corresponding values observed in similar Schiff-base complexes [6-9].

In the crystal structure, the molecules are linked via intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ non-classical hydrogen bonds, forming a two-dimensional network (more details are given in table 3 and figure 2).

3.2. Optimized geometry

Calculated bond lengths and angles of the compound at the LANL2DZ level by DFT and UHF methods are listed in table 2. The bond lengths and angles of the experimental values and the calculated values have been compared by three theoretical methods. Most of the optimized bond lengths are slightly longer than the experimental values, due to the fact that the theoretical calculations are based on the isolated molecules in the gaseous phase, while the experimental results are based on the molecules in the solid state. In general, the values of the compound with DFT methods are more realistic than those with UHF, and the accuracies of the two DFT methods are comparable. Furthermore, the deviations of the experimental and the calculated values are almost equivalent. Based on the above consideration, the calculated result by the B3PW91 method based on LanL2DZ basis set was used to study the properties of the compound.

The differences of the bond lengths and bond angles occur mainly at the Cu 1 coordinate environment between the theoretical and experimental data. The biggest deviation of the bond lengths is $0.106 \AA$ at $\mathrm{N} 1-\mathrm{C} 7$ and the biggest deviation of the bond angles is 5.6° at $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$. The errors of the bond lengths related to the Cu 1 atom in the trigonal bipyramid are $0.026 \AA(\mathrm{Cu} 1-\mathrm{O} 1), 0.068 \AA(\mathrm{Cu} 1-\mathrm{N} 1), 0.045 \AA(\mathrm{Cu} 1-\mathrm{N} 2)$ and $-0.033 \AA(\mathrm{Cu} 1-\mathrm{O} 2)$ between the experimental and the calculated values. The errors of the bond angles related to the centre Cu 1 atom are $-1.7,5.6,-1.3,-2.7,-3.0$ and 5.3° at $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1, \mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2, \mathrm{~N} 1-\mathrm{Cu} 1-\mathrm{N} 2, \mathrm{~N} 1-\mathrm{Cu} 1-\mathrm{O} 2, \mathrm{~N} 2-\mathrm{Cu} 1-\mathrm{O} 2$ and $\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2 \mathrm{~A}$, respectively. In spite of these differences, the optimized geometry represents a good approximation with the crystal structure and is the basis for

Table 4. Mülliken atom charges and Mülliken spin densities of the compound.

Atom	Mülliken atomic charges	Mülliken spin densities
Cu1	0.6594	0.60375
O1	-0.4344	0.12857
N1	-0.3247	0.11935
N2	-0.3376	0.09124
O2	-0.3022	0.03254
O2A	-0.3022	0.03254
N3	0.2246	-0.00372
C1	0.4178	-0.00942
C7	-0.1155	-0.02221
C8	-0.4593	0.00208
C9	0.3695	-0.00680
C13	-0.1510	-0.00878
O3	-0.2220	-0.00055
C2	-0.2941	0.01191
C6	0.3020	0.00711
C10	-0.2750	0.00594
C12	-0.1808	0.00766
C11	-0.0034	-0.00035
C3	-0.1736	-0.00462
C5	-0.2999	-0.00338
C11	-0.1554	-0.00681
C4	-0.1622	0.00040
C12	-0.0582	0.00007

calculating other properties, such as natural population analysis (NPA) of the atomic charge distributions, FMOs and NBO analysis, as described below.

3.3. Atomic charge analysis

The Mülliken atomic charges and Mülliken atomic spin densities of the non-hydrogen atoms for the compound are listed in table 4.

When comparing the atomic charges in the compound, we found that atomic charge redistribution occurs on all of the atoms. To form $\left[\mathrm{Cu}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}\right)\left(\mathrm{NO}_{3}\right)\right], 0.9424 \mathrm{e}$ net atomic charges from the Schiff-base ligand and 0.3982 e from the nitrate anion were transferred to the copper(II). Total charge density surface is shown in figure 3 by using ChemOffice 2004 software package of version 8.0 [22] based on the UB3PW91/ LanL2DZ level calculation. The terminations of the nitrate and the chloro-group of the compound show the negative electronic character, and positive character is shown at the other end. The dipole moment of the compound is 14.5664 Debye. Mülliken atomic spin densities are also redistributed to other atoms, and mainly occur on the donor atoms ($\mathrm{O} 1, \mathrm{~N} 1, \mathrm{~N} 2, \mathrm{O} 2$ and O 3) and the acceptor atom Cu . The spin densities on copper(II) are decreased and the donor atoms have a certain spin densities character.

3.4. Natural atomic orbital and natural bond orbital analysis

Selected NBO electronic occupancies and intramolecular natural bond orbitals on alpha and beta electrons interacting at bond critical points for the compound are listed

Figure 3. Total charge density surface of the compound.
in tables 5 and 6, which were calculated on natural atomic orbital and bond orbital analysis at UB3PW91/LanL2DZ level based on the experimental structure.

The NBOs analyses revealed the valence electrons on Cu 1 adopt lone pair mode including five alpha lone pairs and four beta lone pairs around the Cu . However, powerful high electron occupancies exist on the $\mathrm{LP}^{*}(5) \mathrm{Cu} 1$ (0.4054 e for beta electrons) with almost s-character and $\mathrm{LP}^{*}(6) \mathrm{Cu}$ (0.1391 e and 0.1287 e for both alpha and beta electrons) with almost d-character, contributing to the stable coordination compound.

The NBOs analyses for the alpha electrons reveal that the typical single-double arrangements are adopted in the phenyl and pyridyl rings of the Schiff-base ligand, however, for the beta electrons, two double bonds exist in the phenyl ring and the typical single-double arrangement was adopted as the same character of the alpha electrons in the pyridyl ring. There were still higher electronic occupancies at the corresponding antibonds of the double bonds in the phenyl ring and the pyridyl ring, indicating the strong delocalization from the idealized Lewis structure. The double bond (sigma and pi bonds coexist between C7 and N1 atoms) character of the alpha electrons is the same as that of the beta electrons. $\mathrm{LP}^{*}(1)$ on C 1 and $\mathrm{LP}(1)$ on C 4 have higher beta electronic occupancies due to the substituent groups of Cl 1 and Cl 2 .

In the nitrate anion, the alpha electronic character is different from that of the beta electrons in the corresponding bond, delocalization of the p-electrons exists among O 2 , $\mathrm{O} 3, \mathrm{O} 2 \mathrm{~A}$ and N 3 atoms.

To investigate the origin of the electronic interactions deeply, couples of donor and acceptor $($ donor $=$ donor electrons, acceptor $=$ accept electrons) of NBOs and their interacting stabilization energies for the compound are listed in table 6. The stabilization energies are proportional to the NBO interacting intensities. From the
Table 5. Selected NBOs electron occupancies of the compound.

Alpha electrons		Beta electrons		Alpha electrons		Beta electrons	
$\mathrm{BD}(1) \mathrm{C} 1-\mathrm{C} 2$	0.9884	$\mathrm{BD}(1) \mathrm{C} 1-\mathrm{C} 2$	0.9836	LP(1)Cu1	0.9987	LP(1)Cul	0.9986
$\mathrm{BD}(2) \mathrm{C} 1-\mathrm{C} 2$	0.7665	$\mathrm{BD}(1) \mathrm{C} 2-\mathrm{C} 3$	0.9862	LP(2)Cul	0.9975	LP(2)Cu1	0.9970
BD*(2)C1-C2	0.2380	$\mathrm{BD}(2) \mathrm{C} 2-\mathrm{C} 3$	0.8796	LP(3)Cu1	0.9966	LP(3)Cu1	0.9960
$\mathrm{BD}(1) \mathrm{C} 2-\mathrm{C} 3$	0.9865	BD* (2) $\mathrm{C} 2-\mathrm{C} 3$	0.1484	LP(4)Cul	0.9962	LP(4)Cu1	0.9882
$\mathrm{BD}(1) \mathrm{C} 3-\mathrm{C} 4$	0.9851	$\mathrm{BD}(1) \mathrm{C} 3-\mathrm{C} 4$	0.9851	LP(5)Cul	0.9908	LP*(5)Cul	0.4054
$\mathrm{BD}(2) \mathrm{C} 3-\mathrm{C} 4$	0.7937	BD(1)C5-C4	0.9888	LP*(6)Cul	0.1391	LP*(6)Cul	0.1487
BD*(2)C3-C4	0.2458	BD(1)C6-C5	0.9797	LP(1)O1	0.9832	LP(1)O1	0.9801
$\mathrm{BD}(1) \mathrm{C} 4-\mathrm{C} 5$	0.9889	BD(2)C6-C5	0.8123	LP(2)O1	0.9532	LP(2)O1	0.8488
$\mathrm{BD}(1) \mathrm{C} 5-\mathrm{C} 6$	0.9796	BD* (2) $\mathrm{C} 6-\mathrm{C} 5$	0.2516	LP(3)O1	0.8602	LP(3)O1	0.8143
BD(2)C5-C6	0.8109	BD (1) $\mathrm{C} 1-\mathrm{C} 6$	0.9824	LP(1)N1	0.9458	LP(1)N1	0.8440
BD*(2)C5-C6	0.2493	$\mathrm{BD}(1) \mathrm{O} 1-\mathrm{C} 1$	0.9913	LP(1)N2	0.9442	LP(1)N2	0.8696
BD(1)C6-C1	0.9846	$\mathrm{BD}(1) \mathrm{C} 2-\mathrm{Cl} 1$	0.9893	LP(1)O2	0.9874	LP(1)O2	0.9874
$\mathrm{BD}(1) \mathrm{O} 1-\mathrm{C} 1$	0.9940	$\mathrm{BD}(1) \mathrm{C} 4-\mathrm{Cl} 2$	0.9906	LP(2)O2	0.9546	LP(2)O2	0.9274
$\mathrm{BD}(1) \mathrm{C} 2-\mathrm{Cl} 1$	0.9893	BD(1)C7-C6	0.9784	LP(3)O2	0.8314	LP(3)O2	0.8299
$\mathrm{BD}(1) \mathrm{C} 4-\mathrm{Cl} 2$	0.9906	BD(1)N1-C7	0.9920	LP(1)O2A	0.9874	LP(1)O2A	0.9874
$\mathrm{BD}(1) \mathrm{C} 6-\mathrm{C} 7$	0.9804	$\mathrm{BD}(2) \mathrm{N} 1-\mathrm{C} 7$	0.9837	LP(2)O2A	0.9546	LP(2)O2A	0.9274
BD(1)C7-N1	0.9920	BD*(2)N1-C7	0.1135	LP(3)O2A	0.8314	LP(3)O2A	0.8299
BD(2)C7-N1	0.9840	$\mathrm{BD}(1) \mathrm{N} 1-\mathrm{C} 8$	0.9826	LP*(1)N3	0.6030	LP*(1)C1	0.4591
BD*(2)N1-C7	0.1094	$\mathrm{BD}(1) \mathrm{C} 8-\mathrm{C} 9$	0.9866	LP(1)O3	0.9895	LP(1)C4	0.5635
$\mathrm{BD}(1) \mathrm{N} 1-\mathrm{C} 8$	0.9858	$\mathrm{BD}(1) \mathrm{C} 9-\mathrm{C} 10$	0.9871	LP(2)O3	0.9326	LP(1)O3	0.9893
$\mathrm{BD}(1) \mathrm{C} 8-\mathrm{C} 9$	0.9867	$\mathrm{BD}(1) \mathrm{C} 10-\mathrm{C} 11$	0.9881	LP(3)O3	0.7273	LP(2)O3	0.9329
$\mathrm{BD}(1) \mathrm{C} 9-\mathrm{C} 10$	0.9885	$\mathrm{BD}(2) \mathrm{C} 10-\mathrm{C} 11$	0.8227	LP(1)Cl1	0.9952	LP(1)Cl1	0.9951
BD(1)C10-C11	0.9881	BD* (2) $\mathrm{C} 10-\mathrm{C} 11$	0.1433	LP(2)Cl1	0.9849	LP(2)Cl1	0.9847
$\mathrm{BD}(2) \mathrm{C} 10-\mathrm{C} 11$	0.8217	$\mathrm{BD}(1) \mathrm{C} 11-\mathrm{C} 12$	0.9897	LP(3)Cl1	0.9610	LP(3)Cl1	0.9606
BD*(2)C10-C11	0.1425	$\mathrm{BD}(1) \mathrm{C} 12-\mathrm{C} 13$	0.9894	LP(1)Cl2	0.9950	LP(1)Cl2	0.9950
$\mathrm{BD}(1) \mathrm{C} 11-\mathrm{C} 12$	0.9897	$\mathrm{BD}(2) \mathrm{C} 12-\mathrm{C} 13$	0.8119	LP(2)Cl2	0.9868	LP(2)Cl2	0.9868
BD(1)C12-C13	0.9914	BD*(2)C12-C13	0.1265	LP(3)Cl2	0.9711	LP(3)Cl2	0.9711
$\mathrm{BD}(2) \mathrm{C} 12-\mathrm{C} 13$	0.8113	$\mathrm{BD}(1) \mathrm{C} 13-\mathrm{N} 2$	0.9918				
BD*(2)C12-C13	0.1250	$\mathrm{BD}(1) \mathrm{N} 2-\mathrm{C} 9$	0.9923				
$\mathrm{BD}(1) \mathrm{C} 13-\mathrm{N} 2$	0.9919	$\mathrm{BD}(2) \mathrm{N} 2-\mathrm{C} 9$	0.8841				
$\mathrm{BD}(1) \mathrm{N} 2-\mathrm{C} 9$	0.9926	BD*(2)N2-C9	0.2256				
$\mathrm{BD}(2) \mathrm{N} 2-\mathrm{C} 9$	0.8859	$\mathrm{BD}(1) \mathrm{O} 2-\mathrm{N} 3$	0.9965				
BD*(2)N2-C9	0.2265	$\mathrm{BD}(1) \mathrm{O} 2 \mathrm{~A}-\mathrm{N} 3$	0.9965				
$\mathrm{BD}(1) \mathrm{O} 2-\mathrm{N} 3$	0.9972	$\mathrm{BD}(1) \mathrm{N} 3-\mathrm{O} 3$	0.9969				
$\mathrm{BD}(1) \mathrm{N} 3-\mathrm{O} 3$	0.9981	BD(2)N3-O3	0.9958				
$\mathrm{BD}(1) \mathrm{O} 2 \mathrm{~A}-\mathrm{N} 3$	0.9972	BD*(1)N3-O3	0.1380				
		BD*(2)N3-O3	0.2240				

[^1]Table 6. Selected couples of donor NBOs and acceptor NBOs for the compound.

Alpha electrons			Beta electrons		
Donor NBO	Acceptor NBO	$\mathrm{kJ} \mathrm{mol}^{-1}$	Donor NBO	Acceptor NBO	$\mathrm{kJ} \mathrm{mol}^{-1}$
From Schiff-base ligand to Cu 1					
LP(1)O1		14.90	LP(1)O1	LP*(6)Cu1	33.89
LP(2)O1	LP*(6)Cul	85.02	LP(3)O1	LP*(5)Cu1	116.02
LP(1)N1	LP*(6)Cu1	84.73	LP(3)O1	LP*(6)Cu1	83.39
LP(1)N2	LP* ${ }^{\text {(6)Cul }}$	80.71	LP(1)N1	LP*(5)Cu1	63.55
			LP(1)N1	LP*(6)Cu1	103.43
			LP(1)N2	LP*(5)Cu1	66.90
			LP(1)N2	LP*(6)Cu1	91.84
From nitrate anion to Cul					
LP(2)O2	LP*(6)Cu1	34.69	LP(2)O2	LP*(5)Cu1	19.75
LP(2) O 2 A	LP* ${ }^{(6) \mathrm{Cu}} 1$	34.69	LP(2)O2	LP*(6)Cu1	35.73
			LP(2) O 2 A	LP*(5)Cu1	19.75
			LP(2) O 2 A	LP*(6)Cu1	35.73

LP represents lone pair, LP* represents anti-LP.

Schiff-base ligand to the Cu1, s-p hybridized lone pair electrons of O1, N1 and N2 acting as donor NBOs can easily give electrons to the acceptor NBOs LP*(5)Cu1 and $\mathrm{LP}^{*}(6) \mathrm{Cu} 1$ (significant powerful conjugative delocalization exists from the O1, N1, N2 to Cu 1 and the coordination energies are 333.21, 251.71, 239.45, 90.17 and $90.17 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively), forming the stable coordination structure. From nitrate to Cu1, s-p hybridized lone pair electrons of O2 and O2A acting as donor NBOs co-overlap partly the same orientation of the acceptor NBOs LP*(5)Cu1 and $\mathrm{LP}^{*}(6) \mathrm{Cu} 1$, so, the conjugative delocalization is not very effective and the stabilization energies are lower than those of other coordinate atoms. According to the result of second order perturbation theory analysis, the lone pairs of Cu 1 have no contribution to the coordination of the compound. The sketch maps of the fronter molecular orbitals are shown in figure 4.

4. Conclusion

In this contribution, one Schiff-base copper(II) compound has been synthesized and characterized by X-ray single crystal diffraction. X-ray structure determination revealed that the compound possesses crystallographic mirror symmetry. The $\mathrm{Cu}^{\mathrm{II}}$ ion in the compound is five-coordinate in a distorted trigonal bipyramid by one O and two N atoms of the Schiff-base ligand and by two O atoms of the nitrate anion. In the crystal structure, the molecules are linked via intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ non-classical hydrogen bonds, forming a two-dimensional network. Ab initio calculational studies on the title compound, gave good correlations between the experimental and calculated structure. The coordination characteristics of the title compound were discussed by studying atomic charges distribution, spin densities and natural bond orbitals in detail.

Acknowledgement

The research was supported by the National Natural Science Foundations of China (NSFC No. 30270245 and No. 30470247), as well as the QuFu Normal University for Science and Technology.

References

[1] Y. Zhang, Z.J. Guo, X.Z. You. J. Am. Chem. Soc., 123, 9378 (2001).
[2] R.S. Downing, F.L. Urbach. J. Am. Chem. Soc., 91, 5977 (1969).
[3] P.A. Ganeshpure, G.L. Tembe, S. Satish. J. Mol. Catal. A, 113, L423 (1996).
[4] B. Bosnich. J. Am. Chem. Soc., 90, 627 (1968).
[5] J.P. Costes, J.M. Dominiguez-Vera, J.P. Laurent. Polyhedron, 14, 2179 (1995).
[6] Z.-L. You, B. Chen, H.-L. Zhu, W.-S. Liu. Acta Cryst., E60, m884 (2004).
[7] Z.-L. You, H.-L. Zhu. Acta Cryst., E60, m1079 (2004).
[8] Y.-X. Sun. Acta Cryst., E61, m338 (2005).
[9] Y.-X. Sun, G.-Z. Gao, H.-X. Pei, R. Zhang. Acta Cryst., E61, m370 (2005).
[10] Bruker, SMART and SAINTPLUSE, Bruker AXS Inc., Madison, Wisconsin, USA (2002).
[11] G.M. Sheldrick. SADABS. Program for Empirical Absorption Correction of Area Detector, University of Göttingen, Germany (1996).
[12] G.M. Sheldrick. SHELXTL-97, Program for X-ray Crystal Structure Solution, University of Göttingen, Germany (1997).
[13] A.D. Becke. J. Chem. Phys., 98, 5648 (1998).
[14] C. Lee, W. Yang, R.G. Parr. Phys. Rev. B., B37, 785 (1998).
[15] K. Burke, J.P. Perdew, Y. Wang. In Electronic Density Functional Theory: Recent Progress and New Directions, F. Dobson, G. Vignale, M.P. Das (Eds), Plenum (1998).
[16] J.P. Perdew. In Electronic Structure of Solids '91, P. Ziesche, H. Eschrig (Eds), p. 11, Akademie Verlag, Berlin (1991).
[17] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev., B46, 6671 (1992).
[18] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev., B48, 7892 (1993).
[19] J.P. Perdew, K. Burke, Y. Wang. Phys. Rev., B54, 16533 (1996).
[20] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. J. Comput. Chem., 14, 1347 (1993).
[21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople. Gaussian 03, Revision C.02, Gaussian Inc., Wallingford CT (2004).
[22] ChemOffice software package (Version 8.0), CambridgeSoft Corporation (2003).

[^0]: *Corresponding author. Tel.: +86-537-4451672. Email: yuxisun@163.com

[^1]: BD for 2-center bond, LP for 1-center valence lone pair, and $\mathrm{BD} *$ for 2-center antibond, the unstarred and starred labels correspond to Lewis and non-Lewis NBOs, respectively, a serial number $(1,2, \ldots$ if there is a single, double, \ldots bond between the pair of atoms), and the atom(s) to which the NBO is affixed.

